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approaches for designing, modelling and manufacturing an effective passive vibration
damper using the ABH effect. The effectiveness of such vibration absorbers increases
with frequency. Initially, the dynamic behaviour of an Euler-Bernoulli beam is
expressed using the Impedance Method, which in turn leads to a Riccati equation
for the beam impedance. This equation is numerically integrated using an adaptive
Runge-Kutta-Fehlberg method, yielding the frequency- and spatially-dependent impe-
dance matrix of the beam, from which the reflection matrix is obtained. Moreover, the
mathematical model can be extended to incorporate an absorbing film that assists for
reducing reflected waves from the truncated edge. Therefore, the influence of the
geometrical and material characteristics of the absorbing film is then studied and an
optimal configuration of these parameters is proposed. An experiment consisting of an
elliptical plate with a pit of power-law profile placed in one of its foci is presented. The
elliptical shape of the plate induces a complete focalisation of the waves towards ABH
in case they are generated in the other focus. Consequently, the derived 1-D method for
an Euler-Bernoulli beam can be used as a phenomenological model assisting for better
understanding the complex processes in 2-D elliptical structure. Finally, both, numer-
ical simulations and experimental measurements show significant reduction of vibra-
tion levels.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Damping of structural vibrations of beams and plates has always been a challenging aim for many researchers and
engineers. One of the methods for achieving this goal is by reducing wave reflections from boundaries of structures under
test by treating their ends. In this regard, the fact that flexural waves in beams and plates slow down if their thickness
decreases was successfully used by Mironov for establishing the theory of Acoustic Black Holes (ABH) [1]. The main idea of
this approach is to use a power-law relationship between local thickness h and the distance from the edge x, in the form

h(x) = ex™ (m > 2), (1)

in order to reduce the local phase velocity. Furthermore, it can be shown that the travel time needed for a wave to reach
the edge of a beam can be infinite when the truncated thickness of the profile tends to zero. Therefore, under such
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Fig. 1. One-dimensional ABH configuration, the corresponding geometrical dimensions are given in Table 1.

conditions the flexural waves stop propagating and the reflection coefficient becomes equal to zero. This is the basic
principle of ABH as described by Mironov.

Nevertheless, the practical implementation of this idea is a complicated task because of manufacturing difficulties.
Despite the high precision of modern cutting machines, manufactured beams and plates with power-law profiles always
exhibit truncations at certain distance xo from the coordinate origin, with a non-zero edge thickness hg (see e.g. Fig. 1). This
is why a reflected wave from a truncated edge always occurs, which partly cancels the effect of ABH and makes its practical
application unattractive. However, a recently proposed approach by Krylov et al. [2-4] has combined the use of power-law
profile wedge (ABH) with a thin absorbing film with length x,,s —Xo (see Fig. 1) covering fully or partially the treated area,
leading to the so-called acoustic black hole effect. Thus, the additional use of a conventional damping technique could
overcome to some extent the undesirable consequences of the truncated thickness profile.

In more details, Krylov et al. [2-4] have used a geometrical acoustic approach to describe the propagation of
flexural waves towards a free edge. The effect of a thin absorbing film was taken into account using the model of
Ross-Ungar-Kerwin [5] for constrained layer damping in the special case of extensional damping (no constraining layer).
As a result, the reflection coefficient was analytically expressed as simplified formulae for different power-law profiles of
order m=2, 3, 4 and for a sinusoidal profile [2]. More detailed expression of reflection coefficient is given in Ref. [3], where
the effect of thicker absorbing films was taken into consideration. Furthermore, the first experimental results regarding the
use of ABH along with adhesive material as an effective vibration absorber were reported by Krylov and Winward [4]:
measurements of driving-point mobility functions of a quadratic steel plate with ABH placed at the edges were of primary
interest for the authors. The frequency response functions showed significant reduction of mobility in the high frequency
range for the plate which power-law profile was covered by an adhesive stripe, as compared to the same plate without
absorbing material. Later on, experiments on tapered rods with power-law profiles [6] demonstrated the damping of
flexural vibrations in one-dimensional structures and its application for reducing impact-induced vibrations in tennis and
badminton racquets [7]. Thus, the combination between ABH and additional damping material was experimentally
validated as a promising measure for vibration reduction. Preliminary results to the present work were published in
Ref. [8] in the case of elliptical plates where an ABH was placed in the inner domain and not at the boundary of the
structure, taking advantage of a focalisation effect.

A similar method for attenuating structural wave reflections at the edges of bars and plates by using graded impedance
interfaces has been reported by Vemula et al. [9]. It is known that the energy reflection in inhomogeneous elastic materials
is caused by mismatch of impedance characteristics between different regions. The idea of the method is to change
gradually the impedance at the edge by using a combination of different plates of the same thickness with specific
impedance properties. Thus, gradually modifying the impedance properties at the end of the steel plate, part of vibration
energy was successfully damped in the range from 2 to 10 kHz. The similarity between ABH and graded impedance
interfaces is in modifying the impedance properties near the edge of the beam or plate. However, the latter approach
requires a relatively large number of different material layers in order to design a smooth impedance curve, which makes
it difficult for practical application.

In the light of above-mentioned previous research, the aim of this paper is twofold. Firstly, a reliable numerical method
for modelling of ABH in 1-D beam structures, which is not limited by the hypothesis of geometrical acoustics, is to be
established. This will allow optimising geometrical and material parameters of the absorbing film in order to decrease
reflection coefficient from the truncated edge to its optimal values. Secondly, an experimental method for damping
flexural vibrations in 2-D structures using ABH and wave focusing effects is to be developed. It is achieved by using an
axisymmetric pit of power-law profile centred on one of the focal points of an elliptical plate. The efficiency of this
approach is evaluated experimentally comparing driving-point mobilities of elliptical plates with and without ABH. To the
best of authors’ knowledge all above-mentioned aims represent new findings in the area of ABH theory.

Note that the manufacturing process of producing an ABH is very complex because of the very small truncation
thickness that must be achieved, in the order of 1-10 pm even less, and at the same time following the power-law profile.
This process has been implemented successfully for an elliptical plate but not so effectively for a beam structure. On the
other hand, building 2-D theoretical model of an ABH is related with substantial analytical difficulties, therefore at this
stage the 1-D theoretical model is used for better understanding the physics of ABH in the considered 2-D system.

What follows, in Section 2 the basic principles of the numerical model of a 1-D ABH are presented. In Section 3, the
results of numerical simulations are shown. In more details, Section 3.1 illustrates ABH effect, whereas Section 3.2 deals
with a parametric study that allows an optimisation of the geometrical and material parameters of the absorbing film.
Section 4 encompasses the experimental investigation of elliptical plates with and without ABH, showing the applicability
of the concept. Comparisons with numerical results are included as well.
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2. Modelling of one-dimensional ABH

As was mentioned above, a 1-D ABH is a non-uniform beam having a power-law profile. This 1-D ABH can be extended
to a 2-D configuration consisting of an axisymmetric pit which thickness gradually decreases to (theoretically) zero
towards its centre according to the 1-D thickness profile. Furthermore, the shape of an elliptical plate induces a focalisation
of the waves towards one of its foci if the excitation is applied in the other focus. Thus, considering an inner ABH placed in
one of the foci, all the generated waves in the other focus will reach it either directly or after reflections from the free
edges. The waves excited in this way could be considered as vibrational rays starting from the driving focus and ending to
the damped focus, see Fig. 2. Note that placing the ABH in the inner part of a plate instead of an edge has not been
investigated in the previous ABH studies and is one of the originality of the present approach. In this regard, the 1-D ABH
model can be considered as a phenomenological model for the complex 2-D elliptical configuration.

The non-uniform beam, shown in Fig. 1 and having an axis x, represents the 1-D ABH under consideration. The non-
uniform region is between xagy and xo whereas the absorbing film is between x,,s and xo. The coordinate x; denotes an
arbitrary point in the uniform region. The varying thickness is given by Eq. (1) and the thickness at the end (at xo) is given
by ho=¢xg.

The 1-D ABH model is based on classical beam theory: Euler-Bernoulli hypotheses are assumed [10]. The vibrational
state of the beam can be described by four variables: the displacement w, the local slope 6, the shear force F and the
bending moment M. Harmonic motion is assumed (time factor e!* is supposed) and all variables depend only on the
spatial coordinate x. In this context, a state vector X consisting of the four variables can be written as follows:

X=[w 0 F M]" (2)
and
oX
= =HX (3)
where

H, H; 01 0 o0 —p1A? 0 0 0
H‘{H3 HJ’ H‘_[o 0}' Hz_{o 1/EiL |’ H; = 0 ol H“_[—l o}‘
p; is the material density of the beam, A; = bh is the area of the beam’s cross-section, E; is Young’s modulus of the beam,
and I = bh3/12 is the moment of inertia of the beam’s cross-section.
Thus, Eq. (3) is a compact formulation of the Euler-Bernoulli model [11,12]. Notes and relationships useful for the

present study are given in Appendix A. The state vector is composed of two kinematic and two force variables, which
allows defining the local impedance matrix Z

(4)

Z1 Z
T . T . 1 £
[F M] =jwZ[w 0], with Z= [23 24].

It can be shown that the impedance matrix Z is the solution of the Riccati equation (see Appendix A)

0L . H3
& =—ZH,—jwZH,Z+ _IE +H4Z. (5)
Note: Matrices H;, Hy, Hs, and H, are characteristic matrices of the propagating medium given in Appendix A. If impedance

Z can be specified at one point of the medium, then solving Eq. (4) gives the way to compute Z at any coordinate and to
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b

Fig. 2. Model of elliptical plate flexural vibrations approximated by 1-D vibration rays.
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derive the response of the medium to any excitation force. This is the basic principle of the Impedance Matrix Method, as it
is used for solving multimodal propagation in acoustic waveguides [13].

Once the structural impedance Z is obtained, the reflection matrix R (2 x 2) can be easily defined using a standard wave
approach (see Appendix A)

R = [j0ZE; —E4] ' [Es—j®ZE;], (6)

the matrices Eq, E;, E3, and E4 being given in Appendix A. The scalar components, Ry, Ry, R3, and R4 of the reflection matrix
represent the reflection and coupling between evanescent and propagating flexural waves in the beam. R; corresponds to
propagating waves whereas R4 corresponds to evanescent waves. The coupling between these two types of waves is
characterised by R, and Rs.

In 1-D ABH model the damping has two origins. (i) The visco-elastic and thermo-elastic damping inside the beam
material. This kind of damping can be modelled by a complex Young’s modulus E;, which can be introduced in Eq. (A.2)
using the loss factor #; of beam material. (ii) Damping which can be added by a thin absorbing layer having Young’s
modulus E, and loss factor #7,. The model developed in this study can be extended in order to include this additional
damping effect due to the absorbing film.

The Ross-Ungar-Kerwin model [5] for constrained layer damping in the special case of extensional damping (no
constraining layer) is employed here, as is done by Krylov [3]. The complex bending stiffness of the composite beam (beam
covered by an absorbing film) can be expressed using the bending stiffness of the beam only, the phase velocity of flexural
waves of the composite beam is to be computed (see Appendix B).

3. Numerical simulations
3.1. Numerical method

The efficiency of ABH is estimated by the reflection matrix R, which can be computed from the impedance matrix Z, as
shown in Eq. (5). The latter is the solution of Eq. (4), computed with the boundary conditions Z(x,)=0, describing the fact that
the end of the beam at x=xg is free. The numerical integration procedure of Eq. (4) employs an adaptive Runge-Kutta-Fehlberg
(RKF) method [14]. Because of the widely varying scale of the problem (the thickness of the beam is supposed to vary between
h=1.5mm and hg(—0.01)~ 1.16 um, for the characteristics given in Table 1) such an adaptive approach is much more
convenient than the classical method using a constant integration step. The adaptive RKF method is a numerical scheme of
order 5, which uses two estimates of the solutions obtained with schemes of orders 4 and 5 [15]. The approximate values of the
solution, y,.1 of order 4 and y;,  ; of order 5, and their difference

eni1=Yn+1—Yni1r (7)

can be interpreted as an estimate of the local error associated with the less accurate solution y;, , ; [15]. Thus, e, is used to
adjust the integration step and to keep the magnitude of the local error below the prescribed tolerance.

3.2. Illustration of the ABH effect

Numerical simulations are presented for the beam defined by Fig. 1 and Table 1.

Fig. 3 shows the ABH effect by means of the scalar impedance Z; (solid curve). For example, reducing the thickness of
the beam makes the impedance curve decrease and the distance between impedance peaks become shorter towards the
sharp end. Moreover, the impedance Z; oscillates around the impedance Z§Ef of a reference beam whose reflection matrix is
set up to zero. The impedance matrix of the reference non-uniform beam can be calculated from the following expression:

1

Zl‘ef:jEEBE]—lY (8)

Table 1
Geometrical and material characteristics of the beam under consideration.

Geometrical characteristics Characteristics of material
Beam

X =-0.01m E; =210GPa

Xapy = —0.06m py =7800kg/m?

X =—0.08m 7, =0.001
Abs. film

h;=0.0015m E; =0.5GPa

b=0.0015m py ~950kg/m>

m=4 1, =0.05
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Fig. 3. Impedance Z; (solid curve), wavelength (dashed curve) of a beam with ABH covered by a 10 pm thick absorbing film; and impedance Z;ef (dash-dotted
curve) of a reference beam having a reflection matrix equal to zero, calculated at 20 kHz.
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Fig. 4. Reflection coefficient R; as a function of frequency for a beam with ABH and 700 pum absorbing film (solid curve) and 10 um absorbing film (dash-dotted
curve); ABH only (dashed curve) without absorbing film; and for a uniform beam with 700 pm absorbing film (dotted curve).

where the matrices E; and E; are given in Appendix A. These oscillations depend on the profile’s sharpness defined by the
parameter ¢, and the truncation distance xo. It can be shown that at smaller values for ¢ and x, the impedance Z; tends to
the impedance of the reference beam Z".

In the uniform part of the beam the distance between two resonant peaks L is equal to one half of the wavelength,
L=A(x)/2. In the area of ABH the wavelength (dashed curve) continuously changes proportionally to the phase velocity of
flexural waves. In this region the distance between two impedance peaks is roughly one half of the local wavelength,
L~ A(x)/2, measured in the centre of this spatial area. In case of an ABH whose profile is without truncation, the
wavelength tends to zero. Therefore, ABH could be likened to an accumulation point (all values of the wavelength form a
set of an infinite amount of numbers whose limit point is zero). In practical cases, the truncation and the thickness of
absorbing film define a minimal value of the wavelength.

In Fig. 4 the reflection coefficient R, is presented as a function of frequency in order to illustrate ABH effect. It is shown
that reflection coefficient R; for a beam with ABH covered by 700 pum (solid curve) and 10 pm (dash-dotted curve) are,
respectively, 35% and 30% reduced at 20 kHz, whereas for a beam with ABH only, without any absorbing film (dashed
curve), this reduction is 3% only, and for a uniform beam covered by 700 pm absorbing film it is even smaller—around
1.5%. Therefore, the ABH effect leads to a much more noticeable decrease of reflected waves compared to any individual
treatment of the beam—ABH only or damping treatment only. It has been shown that the wavelength in the area of ABH
decreases (see Fig. 3) due to the power-law profile. Besides, the wavelength is inversely proportional to the square root of
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frequency, thus, at high frequencies the wavelength is further reduced, which leads to reduction of reflected waves as well.
Note that the oscillations of the reflection coefficient decrease and their periodicity becomes larger when the frequency is
increased. Therefore, at frequencies tending to infinity the reflection coefficient should not exhibit any oscillations. The
origin of these oscillations might be due to the sharpness and length of the profile.

3.3. Parametric study

Using the data mentioned in Table 1, a parametric study is proposed in order to define the optimal parameters of the
absorbing film at which the reflection coefficient Ry becomes minimal. ABH and absorbing film dissipate vibration energy
together but using different mechanisms. The absorbing film assists for overcoming disadvantages due to the truncation,
thus, the most important area is near the truncation. The effect of absorbing film is introduced by modifying the loss factor
of composite beam (beam+abs. layer), which means that its main mechanism for further reducing the reflection
coefficients is simply damping of propagating waves before they can reach the truncated edge. However, the absorbing
film increases the thickness of power-law profile and reduces the effect of ABH. For example, adding absorbing film leads
to an increase in phase velocity and wavelength in the areas where its thickness is comparable or larger to that of the
beam, see Fig. 5(a). Therefore, the use of absorbing film in the area of ABH is not straightforward. This is why it is
important to establish some efficient rules to optimise thickness and length of the absorbing film. In the following analysis,
by varying the geometrical and material characteristics of the absorbing film, the rules are established for specifying
thickness, length and loss factor of the absorbing film, which provides a minimum value of the reflection coefficient R; and,
consequently, of the reflected waves.

3.3.1. Thickness of absorbing film

When dissipation characteristics are under consideration, the most relevant parameter is the loss factor of the
compound beam (beam with ABH+absorbing film). In this regard, the ratio between imaginary and real parts of the
wavelength gives an estimation of the loss factor of the compound beam. Fig. 5(b) shows that adding absorbing film results
in an extremum in the loss factor compared to the constant one for the beam without absorbing film. The position of this
maximum can be controlled by the thickness of the absorbing film. For example, at thickness of 700 pm the maximum of
the loss factor is located at around x=-0.023 m, at thickness of 100 um, respectively, at x=—0.013 m. Therefore,
increasing the thickness of the absorbing film makes the maximum shift towards thicker part of the beam and vice versa.
Note that the maximal value of the loss factor does not change when the thickness of the absorbing film varies. Thus,
the position of the extremum is governed by the ratio between the thickness of the absorbing film and the thickness of the
power-law profile. The minimal reflection coefficient corresponds to a thickness of 40 pm. In other words, when
the extremum of the loss factor is positioned at the truncation distance by choosing a proper value of the thickness of
the absorbing film, the reflection of propagating waves is minimal.

3.3.2. Length of absorbing film

Once the thickness of the absorbing film is optimised, treating the area where the loss factors of the compound beam
and beam alone coincide is not necessary. For example, at optimal thickness of 40 um the loss factor of the composite
beam does not differ much from that of the beam alone in the area between x=—0.03 and —0.08 m, see Fig. 6. In this case
the absorbing film can cover only the area of the extremum up to x=—0.03 m. The reflection coefficient for both cases
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Fig. 5. (a) Real part of the wavelength and (b) ratio Im(4(x))/Re(4(x)) of the compound beam for different thicknesses d of the absorbing film.
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Fig. 7. Ratio Im(A(x))/Re(A(x)) of the compound beam (a) and reflection coefficient R; (b) for different values of #,:,=0—thin solid curve;
12=0.05—dashed curve; n,=0.1—dotted curve; #,=0.15—dash-dotted curve; and 1,=0.2—thick solid curve.

when the absorbing film covers the whole profile and when it covers only the area of the extremum do not differ
significantly. However, if the treated area covers partially the extremum (e.g. from —0.01 to —0.015 m), the reflection
coefficient increases, see Fig. 6.

3.3.3. Loss factor of absorbing film

Besides the thickness and length of the absorbing film, its loss factor #, is another parameter that could improve
the efficiency of ABH effect. Fig. 7 shows that increasing the loss factor of the absorbing film leads to direct decrease of the
reflection coefficient. For example, increasing the loss factor #, from 5% to 20% (Fig. 7(a)) leads to reduction of the
reflection coefficient from 55% to less than 10% (Fig. 7(b)). Therefore, using highly absorbing material as a damping layer a
passive absorber without added mass that is able to dissipate more than 99% of vibration energy of propagating waves
could be designed.

3.3.4. Young’s modulus of absorbing film

Young’s modulus of absorbing film E, is used in Eq. (B.1) for specifying the loss factor of compound beam. Thus, the
change of E; could be used for increasing the loss factor and its optimal localisation. Fig. 8 shows the effect of using
absorbing films with different stiffness properties. The increase of Young’s modulus leads to decrease of the loss factor and
shift of the extremum towards the thicker part of the beam and vice versa.
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4. Experimental investigation
4.1. Design and manufacture of the elliptical plate

As mentioned above, an elliptical plate has been designed and manufactured to validate the numerical method. This is
possible due to the focalisation effect that allows comparing the numerical results for a beam with the experimental ones
obtained by testing the elliptical plate (see Fig. 2). The parameters of the materials used can be seen in Table 1, whereas its
geometrical parameters are listed in Table 2.

The manufacturing process of the elliptical plate included four stages. The first one consists of cutting and preparing the
elliptical shape of the plate. In the next step, the power-law profile of ABH is created using an electro-erosion process. In
the third stage, the absorbing film is placed in the area of ABH. In the last phase, the final thickness of the complete plate is
achieved as in the centre of ABH a small hole is formed whose diameter defines the truncation distance.

4.2. Experimental results

Measurements have been carried out for different replicas of the steel elliptical plate in order to demonstrate the
capabilities of the proposed passive absorbing damper. The models that were tested are as follows: elliptical plate with
ABH and without ABH, elliptical plate with disk of resin placed at the location of the ABH and elliptical plate completely
covered by resin. The thickness of the resin is about 500 pum. The equipment used was a Polytech Vibrometer Scanning
Head—OFV 056, an impedance head Bruel&Kjaer type 8001, a Bruel&Kjaer Conditioning Amplifier, an Amplifier LM 3886,
and a Shaker LDS V201. The plates were hanged vertically (‘free-free’ boundary conditions) and excited by the shaker
using a periodic chirp signal. A number of driving-point mobilities and velocity fields were measured.

Fig. 9 shows examples of velocity fields of plates with ABH (b) and without ABH (a) at high frequencies. The excitation force
was applied to the left focus, whereas the ABH is in the right one. It can be seen that the spatial patterns of the plate without
ABH are rather symmetric and equally distributed with some small increases in the area of the right focus, whereas those of the
plate with ABH exhibit a concentration of the velocity field in the area of ABH. This concentration is similar to the accumulation
effect shown in Fig. 3. In fact, due to the focalisation, the vibration energy is guided and focused in the ABH. Thus, the rest of the
plate is quite silent compared to the plate without ABH. Note that due to the focalisation effect, treating the right focus of
the plate with absorbing film reduces plate vibrations as well. However, this decrease is smaller compared to the reduction of
the plate with ABH and this can be seen in the measured point mobility functions.

The graphs in Fig. 10 represent driving-point mobilities at the focus of the plate where the excitation is applied.
Fig. 10(a) displays the driving-point mobility of the plate with ABH and without ABH. The driving-point mobility is defined
as ratio between velocity measured by the laser vibrometer and force generated by the attached shaker at the point of
attachment. In the range above 5 kHz the mobility of the plate with ABH exhibits a reduction between 5 and 10 dB
compared to that of the plate without ABH. This decrease is due to the focalisation and ABH effects. In Fig. 10(b) the same
mobility of the plate with ABH is compared to the driving-point mobilities of plates treated with disk of resin and
completely covered with resin. It is clear that in the same range above 5 kHz the driving-point mobility of the plate with
ABH has the largest decrease compared to the other two. The mobility of the plate covered partially with disk of resin at
the place of ABH has the least reduction. Moreover, the mobility of the absorber consisting of ABH and resin is even lower
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Table 2
Geometrical parameters of the elliptical plate.

Geometrical parameters of the elliptical plate, m

a=03 b=0.39
c=0.1246 d=0.0704
e=0.12 h=0.0015

Fig. 9. Velocity fields of an elliptical plate: (a) without ABH at 8671 Hz and (b) with ABH at 8117 Hz.
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Fig. 10. Point mobility of an elliptical plate: (a) with ABH (solid curve) and without ABH (dashed curved) and (b) with ABH (solid curve), without ABH but
with disk of resin (dashed curve) and without ABH but covered with resin (dotted curve).

compared to the one of the plate entirely covered by resin. These results can be directly related to Fig. 4, where the
reflection coefficient R; of a beam utilising ABH effect exhibits the largest reduction compared to the other beam
configurations. Therefore, the proposed passive vibration damper using the ABH effect suppresses structural vibrations in
high frequency range more efficiently than the traditional use of damping layers.

4.3. Comparison with numerical results

The flexural waves in the 1-D ABH model shown in Fig. 1 can be generated by a single force F applied at the thicker end.
The position of the force is at x;=—0.25 m, which is about the distance between two foci of the elliptical plate, see Fig. 2.
The velocity of the driving point xr can be expressed directly from Eq. (3) after that the driving-point mobility is calculated
easily assuming a unit force and zero moment at the driving point. Therefore, measured driving-point mobilities of the 2-D
elliptical model are compared to their corresponding mobilities of the 1-D phenomenological beam model.
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Fig. 11. Point mobility of a beam: (a) with ABH (solid curve) and without ABH (dashed curved) and (b) with ABH (solid curve), without ABH but with disk
of resin (dash-dotted curve) and without ABH but covered entirely with resin (dashed curve).

Fig. 11(a) shows the calculated driving-point mobilities of a beam with ABH covered by an absorbing film of 700 pm
thickness and of the same beam without ABH and without any absorbing film. It is clearly seen that there is a significant
reduction of mobility function, more than 20 dB above 2 kHz due to ABH. Moreover, the introduced damping layer on the
beam without ABH does not improve much its point mobility functions (see Fig. 11(b)), similarly to Fig. 10(b). For example,
if the beam is partially or fully covered by an absorbing film, it does not reduce the driving-point mobility considerably.
Again, this result could be linked to Fig. 4 and to the calculation of the reflection coefficient R;. However, for the case with
ABH the reduction of point mobility is unquestionable. The good overall agreement between Figs. 10 and 11 shows that
approximating the dynamic behaviour of an elliptical plate by a beam does not introduce significant errors and allows for a
more insight into the theory of ABH to be made.

5. Conclusions

In the present paper, a new alternative approach to the description of damping structural vibrations in beams and
elliptical plates with acoustic black holes (ABH) has been developed and reported. The proposed methodology is based on
the ABH effect for a beam with a power-law profile covered by a thin absorbing layer.

Studying a beam utilising the ABH effect, it was numerically and experimentally confirmed that an absorbing layer
played a very important part in the overall design of this new type of vibration damper. On the one hand, the absorbing
layer reduces the effect of decreasing the length of power-law profile, and on the other hand, it reduces the reflection of
waves due to the end truncation. When applied individually, the power-law profile and the absorbing film did not reduce
the reflection coefficient R; by more than 3%, whereas when applied together this reduction was about 35%.

A parametric study was conducted in order to specify some rules for determining the optimal geometrical and material
properties of the absorbing film. The main criterion for optimising the absorbing film is the loss factor of the compound
beam. The extremum of the loss factor has to be positioned at the end of the beam, which specifies the thickness of the
absorbing film. Covering only the area of extremum of the loss factor specifies the length of the absorbing film. Finally, the
larger the loss factor of the absorbing film the smaller the reflection coefficient R; without changing any other parameters.

The vibration velocity fields measured on elliptical plates demonstrated clearly the role of the ABH effect at one of the
foci and its similarity to the ABH effect for a 1-D structure. The tests of elliptical plates utilising ABH effect show significant
reduction of driving-point mobility compared to the other configurations. In the frequency range above 5 kHz, this
reduction can reach about 10 dB. These results are in good agreement with the numerical calculations of reflection
coefficient Ry and driving-point mobilities for beam configurations. Thus, the physics of ABH effect in elliptical plates can
be successfully explained by numerical results obtained for a 1-D structure.

The above-mentioned new approach to reduction of structural vibrations in beams and elliptical plates using the
acoustic black hole effect could find useful applications in aerospace and automotive industries.
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Appendix A. State vector formalism for a non-uniform beam
A.1. State equation and Riccati equation for the impedance of the beam

In the framework of Euler-Bernoulli model in harmonic regime, the relationships between displacement w, slope 0,
shear force F, and bending moment M can be written in a compact form, called a state equation
oX
2 _HX, Al
o (A1)
where
0 110 0
Xc 0 0|0 1/E1| [H, H,
= , and H= 3 = >
X; —p Ao 0 ‘ 0 0 H, H,

0 0]-1 0

(A.2)

T mio =

p, is the material density of the beam, A; = bh is the area of the beam’s cross-section, E; is Young’s modulus of the beam,
and I, = bh3/12 is the moment of inertia of the beam’s cross-section.
The impedance Z is defined by
XF =jC{)ZXC, (A3)
where subvectors Xc and Xr are composed of kinematic and force components of X. Replacing Eq. (A.3) into Eq. (A.1) leads
to the Riccati equation
oz

. H;
o = ZHIJOZHZ 4 S5 A HAZ (A4)

A.2. Wave expansion of the state vector

By stating H=jN it can be shown that the eigenspace of N plays an important role. Considering the matrix E whose
columns are the eigenvectors of N, and the diagonal matrix A whose diagonal elements are the corresponding eigenvalues,
the following equation can be written:

NE =EA.

In the case of an Euler-Bernoulli beam, the eigenvectors can be specified as follows:

ja a |—ja -«
- - E, E
E- s sl B s :[1 2} (A5)
yoor | r 7 E, E,
-js 8| j§ -6
where
o= kf B= kf3 _ pP1AI® 5= P1AI@
VoA T\ pAo¥ 7= ke » 7 K
and where
w 4 5111602
ki=—, c= A.6
! &) ! P11 (A0)

being the phase velocity.
The eigenvalues of N are the wavenumbers of the beam, and A is given by

A =diag(—kg,jks, ke, —jky) (A7)

The state vector X can be expressed by the matrix of eigenvectors E and a wave vector V, composed by forward and
backward propagating structural waves, X=EV.

A.3. Specifying the reflection matrix R

As was mentioned above, the state vector can be expressed by eigenvectors and wave vector

Xc Ei E, Vf
) E
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To determine the reflection matrix R one can use the fact that the backward propagating wave is a product of the
reflection coefficient and the forward propagating wave, therefore

Vs Vy
{)-{2)

From Egs. (A.3), (A.8) and (A.9) the following equation can be derived:
R = [j=wZE; —E4] ' [Es—jwZE4]. (A.10)

Similarly, the impedance Z can be specified in the form

1
Z= ﬁ[& +E4R][E; +E;R] . (A.11)

Appendix B. Specifying the effect of absorbing film.

In the case of extensional damping (no constraining layer), the complex bending stiffness of the composite two-layered
structure (beam+absorbing film) can be expressed as a function of the bending stiffness of the beam [5]

3(1+hy)*ezhy [1—111,+i(011 +1)]

: , B.1
1+exha(1+]jn,) (B.1)

EI(1+jn) = Exly | (1 +jiy)+e2h3 (1 +ji,) +

where El is the bending stiffness of the composite beam (beam+absorbing film); E;I; is the bending stiffness of the beam
only; # is the loss factor of the composite beam; #; is loss factor of the beam’s material; #, is the loss factor of absorbing
film’s material; E; and E, are Young’s moduli of beam’s and absorbing film’s materials, respectively; e,=E,/E;; d is the
thickness of the absorbing film; h is the local thickness of the beam; h,=d/h.

In the case when the thickness of absorbing film is comparable to the local thickness of the beam the mass of the
absorbing film also should be taken into account, thus, the mass per unit length should be

PA=p1A1+pyA:, (B.2)

where p; and p, are beam’s and absorbing film’s material densities, respectively; A; and A,=bd are beam’s and absorbing
film’s cross-sections, respectively; b is the width of the beam.

Finally, replacing Egs. (B.1) and (B.2) into the expression for phase velocity given in Eq. (A.6), one can obtain the phase
velocity and wavenumber when the effect of absorbing film is introduced

_A[EIA +jma? _ o _ 4 pAn?
G=\T A K= =\ Edwm (B:3)
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